
of mathematical ideas that took place 
between China and the other cultural 
centres (p. 212). Yes, we should distin- 
guish among claims, beliefs, and his- 
torical facts. 

Sometimes Joseph does not notice 
that he disproves his own argumenta- 
tion. He complains about Eurocen- 
trism because it cannot bring itself to 
face the idea of independent develop- 
ments in early Indian mathematics, 
even as a remote possibility. But he 
does not concede this possibility to the 
Greeks with regard to the earlier cul- 
tures of the Near East. By all means, it 
is a too condescending attitude to con- 
cede only "that the Greek approach to 
mathematics produced some [!] re- 
markable results" (p. 346). 

Thus the reader is left with mixed 
feelings. While Joseph rightly rejects the 
hegemony of a Western version of math- 
ematics, he is inclined to replace it by 
another one, although he explicitly 
states that "since the first edition we are 
no closer to gathering further definitive 
evidence of transmission of mathemati- 
cal knowledge to Europe" (p. 354). 
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T he book under review brings to- 
gether sixteen contributions to the 

Diderot Mathematical Forum held un- 
der the auspices of the European Math- 
ematical Society, simultaneously in 
Lisbon, Paris, and Vienna, with tele- 
conference exchanges, on 3 and 4 De- 
cember 1999. The conference in Lisbon 
covered "Historical aspects," the topic 
in Vienna was "Mathematical methods 

Fig. 1 

and calculation in music," while in 
Paris the Forum dealt with "Mathe- 
matical logic and musical logic in the 
twentieth century." 

These three topics are covered in a 
fairly balanced way in this book, five 
articles dealing with the first topic, 
seven with the second, and four with 
the last. All these articles are of signif- 
icant interest, whether from a histori- 
cal or theoretical point of view. Bringing 
them together in the same publication 
sheds magnificent light on the dialogue 
and mutual enrichment that Mathe- 
matics and Music have developed over 
the centuries [1] [2] [3] [4]. 

The first article, by Manuel Pedro 
Ferreira, deals with the musical the- 
ory constructed by Pythagoras. Two 
sounds from the same taut string are 
said to be consonant when they are 
pleasing to listen to simultaneously. In 
the Greek cultural arena of that period 
such sounds are produced by lengths 
of string that are inversely proportional 
to the numbers 1, 2, 3, and 4. These 
compose the famous Tetraktys (1 + 
2 + 3 + 4 = 10), a diagram of figured 
numbers symbolising pure harmony, 
the "vertical hierarchy of relation be- 
tween Unity and emerging multiplic- 

ity," also the source of the Music of 
Spheres that Pythagoreans referred to 
when required to swear (Fig. 1). 

It was perhaps because he was im- 
pressed by the mathematical consis- 
tency of consonance that Pythagoras 
devised the idea that Number is the 
substance of the Universe. 

Be that as it may, on an instrument 
consisting of a single taut string vibrat- 
ing on a sounding board and fitted with 
keys that make it possible to select suit- 
able lengths of the stli_ng being vibrated, 
one obtains with the Tetraktys the in- 
tervals known as octaves, fifths, and 
fourths. Figure 2 represents such a sin- 
gle-stringed instrument (e.g., the Vosges 
spinet, still used today by certain folk 
groups in Eastern France) with the cor- 
responding modern names of the notes. 

Musical instruments such as the 
tetrachord lyre may also be built with 
four strings having these same lengths 
(L, L/2, L/3, L/4) that produce simulta- 
neous sounds. The respective tensions 
are adjusted so that the sound pro- 
duced by each string is that of the 
string having the same length on the 
monochord. 

The article describes the improve- 
ments brought to this theory by Philo- 
laus and others. The chief result of that 
period was obtained by Archytas, who 
demonstrated the need for unequal 
divisions in order to obtain all the con- 
sonants comprised in an octave. He 
recognised the importance of arithmetic, 
geometric, and harmonic means. This 

Length L/4 : obtained sound So]3,fourth of R63,and octave of Sol2 

Length L/3 : obtained sound R63,fifth of Sole 

Length L/2 : obtained sound S012 ,octave of Soil 

Total length L of the vibrating string: its vibration gives the sound designated by Soil 

t , ,  , t 

Sounding box with keys 

Fig. 2 
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allowed him to enrich the range of 
sounds used and their associated in- 
tervals (Fig. 3). 

The reference made to Aristox- 
enus---a pupil of Aristotle who totally 
rejected pythagorean harmony in fav- 
our of a musical theory based on the 
continuous sounds perceived by the 
ear, as well as on the tensions of the 
strings and their relaxation t ime--  
shows the rich diversity of musical 
thinking in Ancient Greece. 

However, the most interesting as- 
pect of this article, whose numerous 
references provide ample scope for 
digging deeper, is certainly the de- 
scription of the rich musical evolution 
flowing from the Greek roots into the 
Latin world and right up to the four- 
teenth century of our era. In St. Au- 
gustine's De Musica, written at the end 
of the fourth century, rhythms are also 
classified according to their propor- 
tions (the proportional notation used 
today came much later). Then in the 
ninth century, Carolingian policy in 
educational and ecclesiastical matters 
defined new practices. It encouraged 
the use of neumes that indicate the in- 
flexions of the voice, but not the pitch 
of the sounds. The names Do, Re, Mi, 
Fa, Sol, etc., appeared with Guido 
d'Arezzo in the eleventh century, de- 
rix4ng from the syllables at the begin- 
ning of the stanzas (voces) of a hymn 
addressed to St John the Baptist, writ- 
ten around 770 A.D. The notes (claves) 
are also designated by letters, a prac- 
tice that is still in use today in English- 
speaking countries (La = A, Ti = B, 
Do = C, . . . ) and in Germany (with 
some specificities). Finally, polyphony 
created new needs for harmonic 
mastery, the response coming from 
Philippe de Vitry in the fourteenth cen- 
tury with his Ars Nova: in this work he 
defined new musical notations as well 

as new ways of combining rhythms. 
However, this culmination of the 
pythagorean musical base that had de- 
veloped over many centuries eventu- 
ally degenerated in the following cen- 
tury because it proved to be inadequate 
for responding to the new aesthetic 
trends that were appearing as well as the 
practical needs of musicians. Those who 
were concerned with the tuning of their 
keyboard instrument were led to con- 
sider the problem of temperament [5]. 

Having had one's mind brilliantly 
stimulated by such an article, one is led 
to wonder about the Byzantine evolu- 
tion, geographically so close to the 
Greek source; regrettably, however, 
this aspect is not touched upon in the 
article. One wonders too what was 
the contribution of the ancient manu- 
scripts passed on by the "sons of the 
Greeks," as the Arabs of the time called 
themselves. Fortunately the article refers 
to the influence of Arabian and Persian 
music in the Cantigas of the Iberian 
Peninsula, and the contribution of the 
reading of the ancients, thanks to the 
translation in the twelfth century of the 
musical treatise by A1 Farabi. 

Eberhard Knobloch's article pro- 
vides a novel answer by introducing 
the concepts of Athanasius Kircher, 
who in 1650 wrote Musurgia Univer- 
salis. Kircher quotes Hermes Tris- 
megistos, the mystical author who was 
so loved by the Medicis and Pico della 
Mirandola: "Music is nothing else than 
to know the order of all things." This 
very pythagorean concept postulates 
that Music is a part of Mathematics 
(and consequently a science). For 
Kircher, this is a relevant concept 
when seeking to help someone having 
virtually no knowledge of the mastery 
of sounds to acquire an in-depth knowl- 
edge of musical composition. Pythago- 
ras doubtless would have disowned 

such a project. Yet, once rid of its ab- 
surd objective, this statement aptly 
sums up the concept of music prevail- 
ing in Renaissance and Baroque times, 
founded on number and its symbolism, 
a source of beauty and harmony. It ac- 
tually sets it in an oriental tradition 
considerably older than the Greeks, 
that considered number as the handi- 
work of God who ordered all things in 
measure, number, and weight (Wisdom 
of Solomon 11.17) and on which all the 
work of Man rests. Kronecker's well- 
known phrase "God created number, 
all the rest is the work of Man," draws 
its inspiration from the same source. 

In fact, Kircher's book develops the 
musical ideas of the minim monk Mar- 
inus Mersennus (Marin Mersenne), in 
particular the combinatory approach 
contained in his Harmonia Univer- 
salis, written in 1636. The article un- 
fortunately does not speak of Mersenne's 
activity as the science correspondent 
of the whole of Europe, nor of his 
creation in 1635 of the Academia 
Parisiensis, the ancestor of the future 
Acad~mie des Sciences; nor does it 
mention the measurement of the speed 
of sound that he obtained in 1636, nor 
his discovery of the higher harmonics 
of a string. No mention is made either 
of his systematic use of the notion of 
frequency, introduced at the time by 
Galileo Galilei. Mersenne was a student 
of the latter's work and was familiar 
with the law that gives the frequency 
of the fundamental vibrat ionf  of a vi- 
brating string having a length L with a 
linear mass p and with tension F: 

f = ~ -  . 

This formula is merely mentioned in 
the Discorsi, written in 1638 by 
Galileo, the son of the musician Vin- 
cenzo Galilei, and it was written in this 
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modern  form only in 1715, by Brook 
Taylor. The limited part  of  Mersen- 
ne's  work  mentioned in the book is 
nonetheless of  major  interest and sets 
the record straight regarding a number  
of  misconcept ions  as to the history of  
science at that  time. 

In his H a r m o n i a  U n i v e r s a l i s ,  Mer- 
senne sets out the table of all the values 
of  the number of permutations with n 
elements up to n = 64. He discusses 
non-repetitive arrangements P ( n , p ) =  

n ( n  - 1) . . . (n - p  + 1) and combina- 
tions C ( n , p )  = P ( n , p )  = P ( n , p ) / P ( p , p ) .  

He solves the problem of calculating the 
number  of  combinat ions presented by 
a given type of  repetitions. This he does 
thirty years before Leibniz succeeds in 
obtaining, with a few errors, the same 
results in his "schoolboy's  essay" D e  

A r t e  C o m b i n a t o r i a ,  and well before 
the combinatorial  work of  Fermat and 
Pascal. If n is the maximum number  
possible of  notes for a song composed  
with p different notes, of  which rl  dis- 
tinct notes appear  once, r2 distinct 
notes appear  t w i c e , . . . ,  and using in 
fact r = r l + r 2 +  �9 �9 �9 +r,,~ distinct 
notes in all, Mersenne gives the total 
number  of  possibilities for the corre- 
sponding songs: 

n! 

r l !r2!  . . . r m ! ( n  - r)!  

For 22 possible notes, of  which 7 dis- 
tinct ones are repeated according to 
the type 2, 2, 1, 1, 1, 1, 1, Mersenne 
shows that there are 3,581,424 possible 
songs. Is it therefore not understand- 
able that  it was the analogy with the 
combinatorics  derived from gaming 
that led Mozart to devise a musical 
game allowing the players to produce 
waltzes by throwing dice [6]? This then 
poses the question of  the link between 
musical creativity and chance. One 
may indeed wonder  if certain of  
Haydn's  composi t ions were not in- 
spired by similar methods. This point 
is not  mentioned, even though his 41st 
piano sonata  is quoted in the article by 
Wilfrid Hodges and Robin J. Wilson 
dedicated to musical forms. Speaking 
of  combinatorics  raises the possibility 
of  using the group of  permutat ions of  
objects that  one arranges and com- 
bines . . . .  F rom there to seeing Galois's 
theory in the practice of  sixteenth cen- 

tury bell-ringers and the rules laid 
down by Fabian Stedman [7] is but  a 
short  step, but  one which none of  the 
articles in this book  dares to take. On 
the other  hand, the approach taken 
does shed light on musical analysis, as 
may be seen in the article by Laurent 
Fichet, and makes it possible to extend 
one 's  horizon, as in Marc Chemillier's 
article dedicated to ethnomusicology. 

The formula mentioned earlier re- 
lating to the fundamental  frequency of  
a string, in turn allows a better under- 
standing of  the problem of tempera- 
ment. It consists of  seeking to divide 
an octave into twelve equal intervals, 
and therefore to identify rational num- 
bers that simultaneously come as close 
as possible to the irrational real num- 
bers 2 (1/12), 2 (2/12), 2 (3/12), . . . , 2 (11/12), 

being aware that a trained ear will per- 
ceive any deviation that is too signifi- 
cant. This leaves plenty of  margin for 
numerous  systems, and the remarkable 
article by Benedetto Scilneni pre- 
sents the choice  p roposed  by Gio- 
seffo Zarlino in his work L e  I s t i t u t i o n i  

h a r m o n i c a e  [8], published in 1558: 

10/9, 9/8, 6/5, 5/4, 4/3, 
3/2, 8/5, 5/3, 16/9, 9/5. 

Galileo's father quarrelled with 
Zarlino because he preferred 18/17 to 
10/9. But of  course, whatever  choice 
one makes, the practical issue is the 
tuning of  instruments, in particular 
harpsichords with several octaves and 
the largest possible number  of  tones. 
The article referred to here mentions 
the remarkable work  undertaken on 
these questions by Giuseppe Tartini, 
Daniel Strfihle, and Christoph Gottlieb 
Schr6ter. One of  the most  fascinating 
aspects is the connect ion with the so- 
lution to Pell/Fermat's equation in Tar- 
tini's T r a t t a t t o  d i  M u s i c a :  

x 2 - 2 y  2 = 1. 

In fact, this becomes obvious when 
one realises that the above also leads to 
coming as close as possible to the irra- 
tional 2 (6/12) = ~ with a rational num- 

ber, a classic problem of diophantine 
analysis, which is much simpler than 
the previous problem of simultaneous 
approximation of the twelfth roots of  2. 

The book is incomplete if one con- 
siders it from the point of  view of  the 

history of  acoustics, a word  invented 
by Joseph Sauveur, who professed 
mathematics  at the Coll~ge de France 
from 1686. Dumb until the age of  seven 
and deaf for the whole of  his life, it is 
he who looked more closely at the ob- 
servation made by Mersenne that there 
exist higher harmonics:  a string may 
vibrate in several parts  around nodes  
that remain faxed. The book  makes 
scant  mention of  the work  of  Bernoulli 
or Euler. It remains almost  completely 
silent concerning the discovery in 1747 
by d'Alembert of  the partial differential 
equation of  vibrating strings: 

~2y _ ~2 02Y 

Ot 2 Ox 2 " 

It is in fact the solution of  this equation 
that makes Sauveur 's  discoveries un- 
derstandable. However, research ac- 
tivity on sound was so extensive at the 
time that to describe it would be an al- 
most  impossible task. We would need 
to mention Wallis, Newton, La Hire, 
not  forgetting Bach, Rousseau, and so 
many others; one would necessarily 
have to be selective. The selection 
made in the book is particularly rele- 
vant, but makes one want  a new Fo- 
rum, to take the question deeper  by re- 
ferring to the activities of  other  authors 
who have been left out. 

The article by Jean Dhombres ex- 
plores another major historical mile- 
stone, by referring to the interest shown 
by Lagrange around 1760 in musical 
texts and the theory of  instruments. In 
h i s  R e c h e r c h e s  s u r  la  n a t u r e  et  la  p r o p -  

a g a t i o n  d u  s o n  he gives a definition of 
the integral of a function as a limit. No 
more number theory and geometry. He 
shows that the same differential equa- 
tion appears in the vibrations of  strings 
and those of  air. He discovers the or- 
thogonal relationship of sine and cosine. 
Yet Lagrange cannot be considered to be 
the inventor either of  series or of  the 
Fourier analysis. It was indeed Fourier 
who recognised the universality of  the 
calculus discovered by Lagrange in his 
study of musical sounds. From a math- 
ematical point of view, the next stages 
in this millennial adventure, which are 
not covered in this book, are the march 
towards distributions [10] and the 
deeper understanding of  spectral analy- 
sis [11] and group representations [12]. 
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Today the Music of corpuscles and 
solitons is taking the place of the Mu- 
sic of spheres and mermaids. Consid- 
erations of the multiple infinitely small 
(chaos?) are replacing those on the sin- 
gle infinitely great (the cosmos?). The 
bifurcation took place at the end of the 
eighteenth century, at the very moment 
when musicians were being pushed 
into the category of artists, whose role 
was to provide pleasure for the pre- 
sent, and mathematicians into the cat- 
egory of scientists, building the society 
of the future. 

The remainder of the book presents 
four articles by Giovanni De Poli and 
Davide Rocchesso, by Erich Neuwirth, 
by Xavier Serra, and by Jean-Claude 
Risset on the application of modern 
digital sound technology. There are 
new acoustic domains being explored, 
such as the impact of non-linearity, 
the hearer's perception, the use of 
computerised toolboxes to produce 
sounds, texture compositions, and 
acoustic illusions. The proliferation is 
huge and shows how that mathemati- 
cal machine par excellence--the com- 
p u t e r - i s  invading music. Far from 
slackening, the interaction between 
the two fields is continuing to develop 
and is as strong as ever. The major 
change seems to have been that math- 
ematics now has its instruments-- 
computers---whereas classical musical 
instruments are left standing. Experi- 
mental practice seems to have provi- 
sionally changed sides, but the process 
of mutual enrichment is continuing [13]. 

It is consequently natural to ask 
about the logic and meaning behind 
this evolution of the two fields [14]. 
Logic has always been essential to 
mathematics, but in the recent period 
it would appear to be less natural in 
music. Of course, one may consider the 
computerised machine learning music, 
as do Shlomo Dubnov and G~rard As- 
sayag. But does this have anything to 
do with logic? Another article by Marie- 
Jos~ Durand Richard, which retraces 
the history of logic, shows that the is- 
sue isn't clear. It refers us to the arti- 
cle by Francois Nicolas dealing with 
just that question: What is the logic in 
music? The answer given by Nicolas is 
as anti-pythagorean as could be, be- 
cause it results in the impossibility of 

defining this concept today, and hence 
leads to falling back on the study of the 
practices involved in musical produc- 
tion, free from mathematical, acoustic 
(physical), and psycho-physiological 
tutelage. Such a loss of meaning is in 
total contradiction of the tradition of a 
relationship between music and logic, 
as illustrated in the double organisa- 
tion of ancient knowledge of liberal 
arts in the form of trivium (grammar, 
rhetoric, logic) and mathematical 
quadrivium (arithmetic or the number 
in itself, geometry or the number in 
space, music or the number in time, as- 
tronomy or the number in space and 
time). Yet it is thoroughly contempo- 
rary. It also sets itself completely apart 
from the theories that Marin Mersenne 
proclaimed in his Traitd de l'harmonie 
universelle published in October 1627 
under the pseudonym Francois de Ser- 
mes [15]. Theorem 1: Music is a part of 
mathematics and consequently a sci- 
ence, capable of showing the causes, 
effects, and properties of sounds, 
songs, concerts, and anything related 
thereto. Theorem 4: Music is both a 
speculative and practical science, and 
an art, and consequently is a virtue of 
understanding, which it leads to the 
knowledge of the truth. In this under- 
standing, which one may consider to 
be outdated (wrongly, for the joint evo- 
lution of the two fields is continuing, 
as the present book shows), the logic 
of music finds profound meaning, 
which the author of the article submits 
to the meditation of its readers. 

To this end, the book contains one 
last article that I have not yet mentioned. 
It is by GueIino Mazzola and is titled The 
Topos Geometry of Musical Logic. (See 
the review by Shlomo Dubrov, this is- 
sue.) On the mathematical side, he relies 
on the theory of categories and Grothen- 
dieck constructions; on the musical side, 
on Riemann's harmony (not G. F. Bern- 
hard but K. W. J. Hugo, i.e., not the math- 
ematician but the author of Mathema- 
tische Logik published in 1873!). He 
develops a Galois theory of musical con- 
cepts which locks Beauty and Truth into 
the same ldngdom. So might there after 
all still be some pythagoreans in our day 
and age, lost among our contempo- 
raries, Guerino being one of them? At 
any rate, his article is fascinating from 

an intellectual point of view. He con- 
firms that the new alliance between mu- 
sic and mathematics announced by 
Pierre Lamothe in 2000 on his Web site 
is forging ahead, though using paths 
other than those he had envisaged [16]. 

This new alliance between pleasure 
and science cannot but enrich both 
parties. It might even constitute a rem- 
edy for the desertion from mathemati- 
cal studies observed in our times, when 
knowledge and work are parcelled out 
piecemeal. The pleasure derived from 
reading this remarkable work is very 
great. The reviewer is convinced that 
other Mathematics and Music initia- 
tives need to be taken, and that there 
is no lack of topics to be covered. 
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I n the context of classical Greek phi- 
losophy, a topos (literally "a place ) 

referred to a method of constructing 
and presenting an argument, being part 
of rhetoric, the art of oration or per- 
suasion. Plato greatly opposed rhetoric, 
claiming that it values style or manner 
of persuasion over the discussion of 
substance. Then came Aristotle's "rec- 
onciliation" of rhetoric and dialectic 
saying that while dialectical methods 
are necessary to find truth, rhetorical 
methods are required to construct an 
argument in order to communicate it. 
The concept of topos was extended 
later to literature by a German scholar, 
Curtius, as a study of ways to compile 
knowledge by selecting and indexing 
important phrases, lines, and/or pas- 
sages from texts and writing them down 

into notebooks known as "common- 
place books." These notebooks were 
commonly indexed and arranged for 
easier reference, and maybe it is not sur- 
prising that the book by Mazzola opens 
by placing music in a new "encyclo- 
space," a space where human knowl- 
edge production is assumed to be cou- 
pled to navigation in a topologically 
arranged concept space. 

In mathematics, category theory is 
known as a study of abstract mathe- 
matical structures and relationships. 
Groups are often used to describe sym- 
metries of objects, and they were used 
by music theoreticians for describing 
musical properties such as scales, 
pitch classes, or rhythms. Every ele- 
ment of the group creates a corre- 
spondence to some other set of ob- 
jects, and Cayley's theorem states that 
every group G is isomorphic to the 
group of its symmetric operations. The 
Yoneda lemma in category theory is a 
generalization of Cayley's theorem that 
allows the embedding of any category 
into a category of mappings (called 
functors) defined on that category. Us- 
ing denotators to describe musical ob- 
jects, categories of musical composi- 
tions are defined as elementary objects 
of music. Then, describing the Yoneda 
Perspective, Mazzola claims that in re- 
lation to the arts, "understanding paint- 
ing and music is a synthesis of per- 
spective variations." Therefore, by 
considering functors as the represen- 
tations, one is led to defining art and 
music as a set of operations (symme- 
tries) that leave the object invariant. 
Music composition becomes the "in- 
variant" or the "essence" of a set of per- 
formances, an idea related also to 
Adorno's esthetic principle in music. 
The emphasis is on the rhetoric func- 
tion "as a means to express under- 
standing, and in this respect perfor- 
mance is not only a perspective of 
action but instantiation of understand- 
ing, of interpretation given structures." 

Mazzola further assumes that math- 
ematical study in the context of art will 
lead to objects which are "meant to de- 
scribe beauty and truth." This brings 
topos theory to being a way for com- 
bining logic and geometry. In topos 
theory one replaces the set by a cate- 
gory, function by a morphism, and 

truth-values by a "subobject classifer," 
which is something more general than 
the Boolean algebra of True and False. 
This, together with the work of 
Grothendieck on algebraic geometry, 
allows Mazzola to define complex mu- 
sical structures of Global Music com- 
positions, with earlier categories being 
embedded as "patchworks" of local ob- 
jects in a global theory, leading to cat- 
egorization of music as constructions 
on geometric manifolds. 

The book opens with a very gen- 
eral, philosophical-historical motiva- 
tion, which seems vague or somewhat 
ambiguous, to provide an intuitive basis 
for dealing with the forthcoming for- 
malisms. In Part II the author goes from 
concrete examples of note representa- 
tions to very abstract concepts of forms 
and denotators, assuming prior knowl- 
edge of advanced concepts of cate- 
gories, topoi, and logic. Asking the 
reader to "recall" these concepts from 
appendix G would probably require also 
"recalling" earlier concepts from ap- 
pendices C-F on set theory, rings, alge- 
bras, and algebraic geometry, and so on. 

Part III of the book deals with the 
next level of describing musical con- 
structs, such as scales and chords, 
terming them "local compositions." 
This brings up a discussion of musical 
symmetries in the local composition 
objects, such as Messiaen modi and se- 
rial techniques. But there appears to be 
a deeper aspect of local composition 
related to the use of functors and their 
concatenations, needed in preparation 
for Part IV. This aspect (culminating in 
the Yoneda Perspective) employs the 
fact that in the denotator representa- 
tion one has the mathematical struc- 
ture of a topos, which offers properties 
such as unions, products, or limits 
(somewhat as in set theory), and al- 
lows for enumeration or classification. 
Musical or visual examples could help 
in clarifying these developments, but 
the author offers rather general claims 
about the utility of the mathematical 
methods to analysis of an Escher draw- 
ing or appreciation of the fractal Julia 
set shape, without much detail. Amer- 
ican Music Set Theory is called "thor- 
oughly out of date from the point of 
view of 20th-century mathematical 
conceptualization." 
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